

$\overline{DPP} - \overline{3(EMI)}$

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/79

Video Solution on YouTube:-

https://youtu.be/bj-eQ-J7A2A

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/61

Q 1. An electric potential difference will be induced between the ends of the conductor shown in the diagram, when the conductor moves in the direction

Q 2. A conducting rod PQ of length l = 1m is moving with a uniform speed v = 2m/s in a uniform magnetic field B = 4T directed into the paper. A capacitor of capacity C = 10 μ F is connected as shown in figure. Then

- Q 3. A coil of area $0.1m^2$ has 500 turns. After placing the coil in a magnetic field (initially plane of coil is perpendicular to field) of strength $4 \times 10^{-4} Wb/m^2$ it is rotated through 90° in 0.1 s. The average emf induced in the coil is (a) 0.2 Volt (b) 0.1 Volt (c) 0.05 Volt (d) 0.012 Volt
- Q 4. A coil of 1200 turns and mean area of $500 \ cm^2$ is held its plane perpendicular to a uniform magnetic field of induction $4 \times 10^{-4}T$. The resistance of the coil is 20Ω . When the coil is rotated through 180^0 in the magnetic field in 0.1 seconds the average electric current (in mA) induced is: (a) 12 (b) 24

(c) 36 (d) 48

- Q 5. The e.m.f. induced in a coil of wire, which is rotating in a magnetic field, does not depend on
 - (a) the angular speed of rotation
 - (b) the area of the coil
 - (c) the number of turns on the coil
 - (d) the resistance of the coil
- Q 6. The phase difference between the flux linkage and the induced e.m.f. in a rotating coil in a uniform magnetic field
 - (a) π (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$
- Q 7. The number of turns in the coil of an ac generator is 5000 and the area of the coil is $0.25 m^2$. The coil is rotated at the rate of 100 cycles/sec in a magnetic field of 0.2 Wb/m^2 . The peak value of the emf generated is nearly (a) 786 kV (b) 440 kV (c) 220 kV (d) 157.1 KV
- Q 8. In a region of uniform magnetic induction $B = 10^{-2}$ T, a circular coil of radius 30 cm and resistance π^2 ohm is rotated about an axis which is perpendicular to the direction of B and which forms a diameter of the coil. If the coil rotates at 200 rpm the amplitude of the alternating current induced in the coil (a) $4\pi^2$ mA (b) 30 mA

(d) 200 mA

- (c) 6 mA
- Q 9. Is induced electric field non conservative ? (a) Yes (c) May be sometimes (b) No (d) cannot say anything
- Q 10. The figure shows as circular region of radius R occupied by a time varying magnetic field B(t) such that $\frac{dB}{dt} < 0$. The magnitude of induced electric field at the point P at a distance r < R is:

- (a) Directly proportional to r
- (b) Inversely proportional to r
- (c) Not varying with r

- (d) varying as inversely proportional to r^2
- Q 11. A uniform but time varying magnetic field $B = (2t^3 + 24t) T$ is present in a cylindrical region of radius R = 2.5 cm as shown in figure. The force on an electron at P at t = 2.0 s is (a) 96×10^{-21} N (b) 48×10^{-21} N

(u)) 0 / 10 11	
(c) 24×10^{-21} N	(d) zero
$(0) 24 \times 10$ N	(u) Zeio

Q 12. A circular ring of radius 20cm has a resistance 0.01Ω . How much charge will flow through the ring if it is rotated from position perpendicular to the uniform magnetic field of B = 2T to a position parallel to field?

(a) 4 C	(b) 6.28 C
(c) 3.14 C	(d) 25.12 C

Q.1 d	Q.2 a	Q.3 a	Q.4 b	Q.5 d
Q.6 b	Q.7 d	Q.8 c	Q.9 a	Q.10 a
Q.11 a	Q.12 d			